СтройКА

Распределение тепла и пара в толще ограждающих конструкций

Рассматривать прохождение тепла через наружные стены проще, если взять за систему исчисления шкалу температур Цельсия, а теплоту представить в виде векторов. В такой системе начало координат совпадает с нулем градусов, а положительная и отрицательная температуры будут представлены в виде разнонаправленных векторов. Если физические процессы, происходящие в стене, рассматривать в шкале Кельвина, то описание будет менее наглядным. В самый холодный период года на наружную стену действуют пара сил количества теплоты: отрицательная с улицы и положительная со стороны помещения. Строительные конструкции, как и всякие другие физические тела, обладают теплосопротивлением. Разнонаправленные векторы количества теплоты, попадая в толщу стены, встречают на своем пути теплосопротивление материала и теряют свою силу, постепенно затухая. Таким образом, одна часть стены со стороны улицы, находящаяся в зоне отрицательных температур, промерзает, другая часть, находящаяся в зоне положительных температур, аккумулирует тепло (рис. 1). Мы знаем, что температура наружного воздуха непостоянна во времени, она то падает, то поднимается. Поэтому положение нулевой изотермы в толще стены не имеет постоянного места, эта изотерма перемещается вместе с изменением внешней и внутренней температуры воздуха. В толстых стенах, имеющих большое теплосопротивление, векторы количества теплоты затухают сами. В тонких стенах они встречаются друг с другом и, имея разные знаки (+/-), либо тоже затухают, либо один вектор пересиливает. В случае победы тепла над холодом стена полностью прогревается и вытесняет нулевую изотерму наружу. В этом варианте ограждение (стена) становится нагревательным прибором по отношению к улице, то есть мы тратим драгоценное тепло, за которое платим деньги, на отопление улицы. Если в борьбе двух векторов побеждает холодный, то изотерма нулевых температур смещается внутрь помещения, стена промерзает насквозь и становится «холодильником» по отношению к помещению. Задача проектировщиков была в том, чтобы при расчетной температуре внутреннего и любой температуре наружного воздуха, характерной для вашего региона строительства, подобрать такую толщину стены, чтобы в холодный период года изотерма нулевых температур всегда находилась в толще ограждения, дабы стена не получилась «холодильником» или «радиатором». Второе условие, которое учитывали при проектировании, температура внутренней поверхности стены не должна отличаться от температуры внутреннего воздуха более чем на 4°С. Иначе наступает дискомфорт, от стены «тянет холодом», хотя она при этом не промерзает и на ней не растет >Грибок. Похожая картина иногда наблюдается после установки пластиковых окон с малым количеством камер. От герметично установленного окна «дует», хотя никаких щелей нет. Просто температура на стеклах окна ниже температуры в помещении более чем на 4°С. Вне зависимости от изменения теплотехнических норм, расчет толщины стен вашего дома велся на температуру наружного воздуха самой холодной пятидневки. Эта величина получена в результате многолетних наблюдений за изменениями погоды в вашем регионе и занесена в СНиП. Температура внутреннего воздуха также регламентируется нормативными документами, в старом СНиПе она равна 18°С, в новом — +20°С. Однако по каким бы нормативным документам не производился теплорасчет, он делался конкретно для вашего региона строительства. Новые нормы направлены только на то, чтобы увеличением толщины стен или введением в их конструкцию эффективных утеплителей добиться снижения энергозатрат на отопление дома. Одновременно с прохождением тепла сквозь стены проходят воздух и водяные пары. Процесс прохождения газов в помещение и из него называется экс- и инфильтрацией воздуха сквозь стены. Он происходит из-за ветрового подпора и из-за разности объемных масс холодного наружного воздуха и теплого внутреннего. Разность эта невелика, поскольку плотность теплого воздуха внутри помещения ненамного отличается от плотности воздуха на улице. Ин- и эксфильтрация имели место быть при установке деревянных окон старого образца, когда воздухообмен сквозь неплотности окон даже учитывался для расчета вентиляции дома. Прохождение воздуха только через материал плотных стен настолько незначителен, что очень мало влияет на воздухообмен помещения. Гораздо важнее понять прохождение сквозь стены водяного пара. Это называется диффузией водяных паров сквозь ограждающие конструкции. Дело в том, что определенный объем воздуха способен удерживать в себе некоторое количество пара. Так, например, один кубометр воздуха, нагретого до 20°С, может содержать в себе 17,3 грамма водяных паров, что соответствует 100% относительной влажности . Большее количество пара этот объем воздуха при данной температуре не вмещает. При полном насыщении воздуха водяным паром малейшее снижение температуры воздуха превращает водяной пар обратно в жидкость. В природе это хорошо нам знакомое явление — образование тумана. При увеличении температуры воздуха и неизменном барометрическом давлении его плотность уменьшается и он способен принять еще некоторое количество пара, а при снижении температуры, наоборот, плотность воздуха увеличивается и он вытесняет «лишний» пар.